Nonstandard characterization of convergence in law for $D[0,1]$-valued random variables
نویسندگان
چکیده
منابع مشابه
Nonstandard Characterization of Convergence in Law for D[0,1]-valued Random Variables
D. Landers and L. Rogge Abstract. We prove for random variables with values in the space D[0; 1] of cadlag functions | endowed with the supremum metric | that convergence in law is equivalent to nonstandard constructions of internal S-cadlag processes, which represent up to an in nitesimal error the limit process. It is not required as earlier, that the limit process is concentrated on the spac...
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملStable Poisson Convergence for Integer-valued Random Variables
Abstract. In this paper, we obtain some stable Poisson Convergence Theorems for arrays of integer-valued dependent random variables. We prove that the limiting distribution is a mixture of Poisson distribution when the conditional second moments on a given σ-algebra of the sequence converge to some positive random variable. Moreover, we apply the main results to the indicator functions of rowis...
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-04504-9